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Purpose: This study aims to evaluate the impact of key parameters on the pseudo computed tomography (pCT) quality gener-
ated from magnetic resonance imaging (MRI) with a 3-dimensional (3D) convolutional neural network.
Methods and Materials: Four hundred two brain tumor cases were retrieved, yielding associations between 182 computed
tomography (CT) and T1-weighted MRI (T1) scans, 180 CT and contrast-enhanced T1-weighted MRI (T1-Gd) scans, and
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40 CT, T1, and T1-Gd scans. A 3D CNN was used to map T1 or T1-Gd onto CT scans and evaluate the importance of

different components. First, the training set size’s influence on testing set accuracy was assessed. Moreover, we evaluated
the MRI sequence impact, using T1-only and T1-Gdeonly cohorts. We then investigated 4 MRI standardization approaches
(histogram-based, zero-mean/unit-variance, white stripe, and no standardization) based on training, validation, and testing
cohorts composed of 242, 81, and 79 patients cases, respectively, as well as a bias field correction influence. Finally, 2 net-
works, namely HighResNet and 3D UNet, were compared to evaluate the architecture’s impact on the pCT quality. The mean
absolute error, gamma indices, and dose-volume histograms were used as evaluation metrics.
Results: Generating models using all the available cases for training led to higher pCT quality. The T1 and T1-Gd models
had a maximum difference in gamma index means of 0.07 percentage point. The mean absolute error obtained with white
stripe was 78 � 22 Hounsfield units, which slightly outperformed histogram-based, zero-mean/unit-variance, and no stan-
dardization (P < .0001). Regarding the network architectures, 3%/3 mm gamma indices of 99.83% � 0.19% and 99.74%
� 0.24% were obtained for HighResNet and 3D UNet, respectively.
Conclusions: Our best pCTs were generated using more than 200 samples in the training data set. Training with T1 only and
T1-Gd only did not significantly affect performance. Regardless of the preprocessing applied, the dosimetry quality remained
equivalent and relevant for potential use in clinical practice. � 2020 Elsevier Inc. All rights reserved.
Introduction

Magnetic resonance imaging (MRI) has become prevalent
in radiation therapy planning owing to its excellent soft
tissue contrast compared with computed tomography (CT).
During the brain tumor radiation therapy process, MRI and
CT play a key role in indicating areas of interest and esti-
mating the dosimetry, respectively. Yet, dealing with mul-
tiple imaging modalities requires coregistration, leading to
errors of up to 2 mm1 and target volume margin increases.

To address this limitation, numerous approaches have
been developed to generate a pseudo computed tomography
(pCT) from MRI.2,3 First, the bulk density approach4,5 as-
signs specific electron densities (EDs) to presegmented
MRI scans; however, this relies on the labeling quality.
Second, the multiatlas method constitutes a multiple-atlas
database representing coregistered pairs of CT and MRI
acquired from different patients. The incoming MRI is first
aligned to the atlas MRI through a deformable registration.
The resulting deformation fields are then applied to the
atlas CT scans, which are combined to generate the pCT.6,7

Because of the computational complexity of deformable
registrations, the multiatlas approach is time-consuming. To
mitigate these limitations, deep learning (DL) methods8-10

have been recently introduced, with promising results.11,12

Compared with the other approaches, DL-based methods
efficiently exploit large databases to learn direct mapping
from MRI to CT.

A deep convolutional neural network (CNN) consists of
a composition of convolutional filters and simple nonlinear
functions organized in layers. The parameters of the CNN
are learned using pairs of MRI/CT training data via
empirical risk minimization and stochastic gradient
descent. DL-based methods benefit from highly efficient
graphical processing unit implementations, which reduce
the inference time of the pCT by several orders of magni-
tude compared with atlas-based methods. Based on an
NVIDIA Titan X graphical processing unit, Han et al13
reported durations of 9 seconds and 10 minutes for the
DL and atlas-based approaches, respectively.

However, there is still no consensus regarding (1) the
optimal training set size, (2) the best-suited magnetic reso-
nance (MR) sequence, (3) the optimal MR standardization
preprocessing, (4) the use of an inhomogeneity correction,
and (5) the best suited network architecture (Table EA1).
Additionally, there has been no discussion about the
approach to evaluate the generated pCT.

Indeed, training data sets sizes ranging from 1514 to 77
patients12 have been reported, raising the issue of the
minimal number of training patients required to ensure a
satisfying generalization to unseen examples. Moreover,
most of the studies used either T1-weighted MRI (T1) or
contrast-enhanced T1-weighted MRI (T1-Gd). However,
the benefit of using a contrast agent in terms of pCT quality
is still unclear. Additionally, only a few studies have
applied MRI intensity standardization as preprocessing.
Yet, doing so can improve pCT quality.15 A similar ques-
tion concerns bias field correction; only Han et al13 have
applied it. Finally, several CNN architectures have been
used in the literature, such as HighResNet16,17 and UNet,13

with no systematic comparisons. An additional aspect not
explicitly discussed in these works is the influence of these
parameters on dosimetry-based pCT evaluation. Numerous
studies report their performance using peak signal-to-noise
ratio or mean absolute error (MAE) metrics,13,18,19 which
may be irrelevant to the real clinical scenario.

This study aims to evaluate the impact of significant
parameters, namely the training data set size, input MR
sequence, standardization strategy, application of in-
homogeneity correction, and network architecture, on the
computed pCT’s accuracy and the associated clinical
dosimetry. The pCT evaluation is based on both the MAE
(based on the intensities and ED) and clinical criteria,
namely 1%/1 mm, 2%/2 mm, and 3%/3 mm gamma indices
and differences in dose-volume histograms (DVHs) of the
planning target volume.
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Methods and Materials

Images acquisition and preprocessing

Four hundred two institutional patients treated between
2006 and 2017 for brain tumors were included in this
retrospective study. For all patients, the delay between the
planning CT and T1 or T1-Gd MR acquisitions did not
exceed 8 days. The data set was composed of 182 CT/T1,
180 CT/T1-Gd, and 40 CT/T1/T1-Gd paired images.

All CT scans were acquired with a Sensation Open
scanner (Siemens Healthineers, Erlangen, Germany) using
a 120kVp tube voltage. The slice thickness was equal to 1
mm, 2 mm, 3 mm, and 5 mm for 3, 45, 353, and 1 patient
cases, respectively. The native X and Y voxel sizes were
included in (0.50 mm; 0.70 mm), (0.70 mm; 0.90 mm), and
(0.90 mm; 1.10 mm) for 208, 76, and 118 patients,
respectively.

The MRI scans were all acquired with GE Healthcare
devices (GE Healthcare, Milwaukee, WI). Two patients’
MR sequences were from external institutes and were ac-
quired on 2 different 1.5T devices: Optima MR360 and
Discovery MR450. The remaining MRI scans were insti-
tutional images, acquired on a 3T Discovery MR750w (224
patient cases), a 1.5T Optima MR450w (9 patient cases), or
a 1.5T Signa Excite (167 patient cases). Only 3-
dimensional (3D) axial T1-weighted images with or
without a gadolinium injection were used. Initial slice
thicknesses were included in (1 mm; 1.2 mm), (1.4 mm; 2
mm), (3 mm; 3.2 mm), and equal to 5 mm for 234, 10, 157,
1 patient, respectively. Regarding the native X and Y voxel
sizes, they were included in (0.44 mm; 0.50 mm), (0.50
mm; 0.58 mm), and equal to 0.94 mm for 325, 73 and 4
patients, respectively.

For each patient, the CTwas first rigidly registered to the
T1 or T1-Gd images using the Drop library (https://github.
com/biomedia-mira/drop2). The images then were linearly
resampled to a 1 mm � 1 mm � 1 mm voxel size, before
harmonizing the volumes to 300 � 300 � 242 voxels. Both
the MRI intensities and the CT Hounsfield units were
clipped, to 0.1 and 99.9 percentiles and (e1000 HU, 1800
HU), respectively. The maximum HU was empirically
determined based on CT intensity histograms. Finally, the
Hounsfield units were rescaled between (e1, 1).

Lastly, 60%, 20%, and 20% of the patients were
randomly parsed into training, validation, and testing sets,
provided that the T1 and T1-Gd were equal in proportion.
Patients with all CT, T1, and T1-Gd images were auto-
matically assigned to the testing set to be used for the
dosimetry-based evaluation.

Standardization strategies

Three approaches were adopted to standardize the MRI.
The first approach was a histogram-based standardiza-

tion (HB) based on the method described by Nyúl et al.20
HB consists of matching percentiles (10, 20, 30, 40, 50,
60, 80, 90) of an image to predefined template values that
are computed using the MR images of the cohort. The in-
tensity match is obtained via a piecewise linear trans-
formation applied to image intensities.

The second approach consists of a normalization of the
intensity distribution inside the head of each patient to zero
mean and unit variance (ZMUV).15

The last method, white stripe (WS),21 is similar to the
ZMUV approach but is based on the normal-appearing
white matter mean and standard deviation, because it is
known to be homogeneous. Brain masks were first extrac-
ted with the HD-BET tool.22 The MR images were then
normalized with the intensity-normalization package.15
Network architectures

Following popular choices of network architectures in the
literature, we decided to use the HighResNet 3D CNN
presented by Li et al23 and the 3D UNet.24

The HighResNet was originally designed for a seg-
mentation task. In contrast to other networks, it preserves
the image resolution (no pooling layers) and is compact
(0.8 million parameters). The main components of the
network were the dilated 3D convolutions with kernels of
size 3 � 3 � 3, the residual connections, the normalization
layers, and the Rectified Linear Unit (ReLU) activations.
These operations were organized into 9 residual blocks
based on convolution filter sizes dilated by 1, 2 or 4. Each
block contained a series of normalization, ReLU, and
convolution, which was repeated twice before adding the
block input to its output. The 2 final layers were not re-
sidual and were composed of 3 � 3 � 3 and 1 � 1 � 1
convolutions to obtain the final pCT volume.

The 3D UNet is a popular encoderedecoder neural
network architecture in medical image computing. It is
characterized by its long shortcut connections between
layers output at different stages of the network architecture,
which give it a U-shape. These connections allow it to
combine features at different scales and different spatial
resolutions. Contrary to the HighResNet, 3D UNet uses
max-pooling layers and no dilated convolutions. This dif-
ference enables the 3D UNet to have more features and to
use larger input patches than the HighResNet at the price of
a lower spatial resolution in some layers of the 3D UNet.
ReLU activation, 3 � 3 � 3 convolutions, instance
normalization, and linear upsampling were used for the 3D
UNet, resulting in approximately 15 million parameters.

The final aim of this work was not to develop an original
network but to provide guidelines for future pCT studies by
evaluating the impact of different parameters on the pCT
quality in terms of image intensity and dosimetry. As a
result, we adapted the HighResNet for pCT generation. We
replaced the normalization layers with instance normali-
zation,25 removed the softmax layer after the last con-
volutional layer, and changed the output channel number to

https://github.com/biomedia-mira/drop2
https://github.com/biomedia-mira/drop2
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1. The modified network architecture is displayed in
Figure EA2.

To optimize the network parameters, we used the MAE
loss function:

MAEZ
1

N
�
XN

iZ 1

��ICTðiÞ� IpCTðiÞ
�� ð1Þ

where ICT(i) and IpCT(i) are the intensities of the CT and the
pCT at voxel i, and N is the considered number of voxels.

Owing to memory constraints, patches of size 96 � 96 �
96 voxels and 136 � 136 � 136 voxels were used as input
of the HighResNet and 3D UNet, respectively. At infer-
ence, the 3D MRI scans were divided into patches to
reconstruct the whole pCT. A patch margin of length 5 and
1 voxels for the HighResNet and 3D UNet, respectively,
was applied, leading to predictions inside subpatches of
size 86 � 86 � 86 and 134 � 134 � 134. The motivation of
the margins is to guarantee a smooth transition between
patches prediction. Note that patches overlapped, contrary
to subpatches. The overlap process is described in
Figure EA3.

For both networks, the learning rate was set to 0.001.
Early stopping on the validation set was used as stopping
criterion to assess the convergence of the CNN. Dropout
was used after the penultimate layer during training with a
probability of 0.5.

Note that no data augmentation was used in this study.

Impact of key parameters

The first experiment consisted of quantifying the impact of
the training set size. Five different HighResNet networks
were trained using 242 (121 T1, 121 T1-Gd), 121 (61 T1,
60 T1-Gd), 60 (30 T1, 30 T1-Gd), 30 (15 T1, 15 T1-Gd),
and 15 (8 T1, 7 T1-Gd) patients, respectively, in the
training set. The validation and testing cohorts were the
same for all the training set sizes and included 81 (41 T1,
40 T1-Gd) and 79 (39 T1, 40 T1-Gd) cases, respectively.
All the MR images were standardized using the HB
method.

A second experiment was conducted to determine the T1
input sequence best suited to generate the pCT. We
constituted 2 HB-standardized cohorts: (1) a T1-only
cohort with 134, 44, and 40 T1 MRI cases for the
training, validation, and testing sets, respectively, and (2) a
T1-Gdeonly cohort with 133, 44, and 40 cases, respec-
tively. The cases included in the 2 testing cohorts were the
same, for a fair comparison. For this experiment, different
T1 and T1-Gd histogram templates were computed for the
HB standardization, based on the 134 and 133 patients
included in the training cohorts. Experiment 2 was based on
the HighResNet.

The third experiment assessed the role of the MRI
standardization using 242 (121 T1, 121 T1-Gd), 81 (41 T1,
40 T1-Gd), and 79 (39 T1, 40 T1-Gd) cases in the training,
validation, and testing sets, respectively. The HighResNet
architecture was used for this experiment. Four different
approaches were investigated: HB, ZMUV, WS, and no
standardization (NS).

The fourth experiment was performed to evaluate the
role of the bias field correction, using HighResNet. As a
result, the N4 filter26 was optionally applied on MR images.
The best standardization technique defined by experiment 3
was used here. The training, validation, and testing sets
were those used in experiment 3.

The last experiment was conducted to analyze the in-
fluence of the network architecture on the quality of the
generated pCT. To this aim, the HighResNet used in the
previous experiments and the 3D UNet were trained, vali-
dated, and tested. The best preprocessing strategies high-
lighted by the third and fourth experiments were applied.
The split of the data set was the same as experiment 3.

A summary of the experiments is presented in
Figure EA4.
Evaluation criteria

First, the initial CT and the pCT were compared using the
MAE (Equation 1). It was computed in 4 different areas:
whole head, air, bone, and water. The head was segmented
using the Otsu approach.27 The other regions were obtained
thresholding the CT: x � �200 HU, �200 HU < x <250
HU, and 250 HU � x for the air, water, and bone regions,
respectively. The MAE was calculated from the 3D in-
tensity volumes or the 3D ED volumes obtained applying
the HU-ED calibration curve.

Furthermore, we evaluated the pCT quality in terms of
dose prediction for all the experiments, except the first one,
by computing metrics used in clinics: 1%/1 mm, 2%/2 mm,
and 3%/3 mm 3D global gamma indices were considered,
and no dose threshold was applied. In addition, relative
differences between CT and pCT DVH (D02%, D50%, D95%,

and D98%) of the planning target volume were calculated.
The dosimetry plans from the original CT were recalcu-

lated on the pCT, with the pencil beam (PB) dose calculation
algorithm implemented in iPlan RT 4.5 Dose (Brainlab,
Munich,Germany).28 The default grid sizewas set to 2mm. It
is worth noting the grid was adaptive, meaning that it became
finer for small objects. This approach was combined with a
ray-tracing technique that was applied during the radiologic
path length calculation. These 2 approaches sped up the dose
calculation. For this dosimetry analysis, a subset cohort of the
testing set, corresponding to cases whose dosimetry had been
realizedwith iPlan, was used. It was composed of 39 grades 3
and 4 glioma cases (19 T1, 20 T1-Gd) treated with a sliding
window intensity modulated radiation therapy approach,
delivered with a 6 MV beam. A total of 18, 11, 7, 2, and 1
patient cases were treated with 5, 6, 7, 8, and 10 beams,
respectively. An illustration of the overall workflow is pre-
sented in Figure EA5.

Two-sided paired Wilcoxon tests, with a significance
level set to .05, were performed as statistical analysis. Only
results computed on the testing set are reported.
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Fig. 1. (From left to right) magnetic resonance imaging, original computed tomography, and pseudo computed tomography
with soft tissue (A) and bone (B) windows widths and levels, respectively, for 2 patients. The squares highlight some of the
incorrect reconstructed areas.
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Results

Figures 1A and 1B present examples of MRI, CT, and pCT
with soft tissue and bone windows widths and levels,
respectively. They were extracted from the third experi-
ment, using the HighResNet and the HB intensities stan-
dardization. The first line corresponds to a low MAE case
(head MAE Z 64 HU) and the second line to a high MAE
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case (head MAE Z 110 HU). Some air and bone areas
appear to be less accurately reconstructed, as highlighted
by the squares.

The intensity-based MAE obtained from different
training set sizes is displayed in Figure 2A. For the head
area, increasing the training data set resulted in a decrease
of the MAE mean � standard deviation (std) from 189 �
28 HU for the 15-patient training set model to 92 � 23 HU
corresponding to the 242-patient training set model. Bone
and air regions had the highest MAE. Differences between
all the training size models were significant for the head
region (P < .0001) except between 30 and 60 patients
(Table EA6).
The ED-based MAE is presented in Figure 2B, to more
accurately assess the pCT quality with respect to its clinical
use. A similar behavior is observed, with a head MAE
decrease from 0.10 � 0.01 to 0.05 � 0.01 when increasing
the training set size from 15 to 242.

Table 1 presents the mean � std of the MAE, gamma
index, DVH difference, and Wilcoxon test values derived
from the T1-only and T1-Gdeonly models. The maximum
differences between the T1 and T1-Gd models obtained for
the head MAE means and gamma index means were equal
to 3 HU and 0.07 percentage points (pp), respectively.

Mean �std of the MAE, gamma indices, and DVH differ-
ences obtained for the standardization experiment are provided



Table 1 Means � standard deviations of the MAE, gamma indices, and DVH differences computed for the PTV and statistical
analysis derived from the T1-weighted MRI (T1) and contrast-enhanced T1-weighted MRI (T1-Gd) cohort comparison

T1 only T1-Gd only P value 95% confidence interval

MAE head, HU 84 � 25 87 � 28 .0047 e3.93 to e0.76
MAE air, HU 274 � 63 306 � 74 <.0001 e36.51 to e22.37
MAE bone, HU 228 � 63 236 � 71 .066 e11.38 to 0.48
MAE water, HU 38 � 11 38 � 12 .82 e0.83 to 0.73
1%/1 mm gamma index 97.87% � 1.16% 97.94% � 1.07% .59 e0.12 to 0.05
2%/2 mm gamma index 99.60% � 0.33% 99.63% � 0.30% .50 e0.05 to 0.02
3%/3 mm gamma index 99.84% � 0.18% 99.85% � 0.18% .44 e0.03 to 0.01
Difference
PTV D02%

0.20% � 0.15% 0.15% � 0.09% .0041 0.02-0.08

Difference
PTV D50%

0.20% � 0.15% 0.13% � 0.08% .015 0.02-0.12

Difference
PTV D95%

0.20% � 0.17% 0.14% � 0.10 .012 0.02-0.12

Difference
PTV D98%

0.27% � 0.37% 0.22% � 0.41% .026 0.01-0.12

Abbreviations: DVH Z dose-volume histogram; MAE Z mean absolute error; PTV Z planning target volume.

Bolded P values are associated with significant distributions differences.
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in Table 2. The statistical analysis is presented in Table EA7.
WS led to a headMAEof 78� 22HU,whichwas significantly
lower than the 3 other methods (P < .0001). Regarding the
dosimetry, 3%/3 mm gamma indices of 99.86% � 0.16%,
99.83%� 0.19%,99.85%� 0.17%, and99.86%�0.18%were
achieved for the HB, ZMUV, WS, and NS approaches.

Regarding the fourth experiment based on the combi-
nation of the HighResNet with the WS standardization,
mean � std of the MAE and dosimetry metrics are pre-
sented in Table 3. Applying the bias field correction led to a
head MAE of 81 � 22 HU. Concerning the DVH D02%,
differences equal to 0.15% � 0.12% and 0.20% � 0.13%
were achieved with and without the application of the N4
filter, respectively (P Z .026).
Table 2 Means � standard deviations of the MAE, gamma indices, a
ZMUV, WS, and NS cohorts

HB ZM

MAE head, HU 92 � 23 83
MAE air, HU 297 � 73 284
MAE bone, HU 251 � 61 214
MAE water, HU 39 � 11 38
1%/1 mm gamma index 97.94% � 1.06% 97.90%
2%/2 mm gamma index 99.63% � 0.28% 99.61%
3%/3 mm gamma index 99.86% � 0.16% 99.83%
Difference
PTV D02%

0.22% � 0.17% 0.22%

Difference
PTV D50%

0.24% � 0.16% 0.23%

Difference
PTV D95%

0.27% � 0.31% 0.21%

Difference
PTV DVH D98%

0.38% � 0.58% 0.27%

Abbreviations: DVH Z dose-volume histogram; HB Z histogram-based; M

target volume; WS Z white stripe; ZMUV Z zero mean/unit variance.
Table 4 provides the MAE and dosimetry values for the
last experiment, which was conducted to compare the
HighResNet with the 3D UNet. For both networks, the WS
MRI standardization and the N4 filter were applied. The
mean� std obtained for the head MAE was 81� 22 HU and
90 � 21 HU for the HighResNet and 3D UNet, respectively
(P < .0001). Significantly higher gamma indices were ob-
tained with the HighResNet (P < .0001), with a pass rate of
97.92%� 1.06% for the most restrictive 1%/1 mm criterion.

Discussion

This study aimed at evaluating the impact of key parame-
ters of brain pCT generation from T1 or T1-Gd images,
nd DVH differences computed for the PTV derived from the HB,

UV WS NS

� 22 78 � 22 96 � 23
� 62 253 � 65 313 � 68
� 55 199 � 54 252 � 60
� 12 36 � 11 43 � 11
� 1.10% 98.08% � 1.01% 97.80% � 1.17%
� 0.30% 99.64% � 0.29% 99.61% � 0.31%
� 0.19% 99.85% � 0.17% 99.86% � 0.18%
� 0.16% 0.20% � 0.13% 0.24% � 0.20%

� 0.16% 0.21% � 0.13% 0.27% � 0.17%

� 0.17% 0.19% � 0.15% 0.32% � 0.32%

� 0.35% 0.20% � 0.17% 0.38% � 0.46%

AE Z mean absolute error; NS Z no standardization; PTV Z planning



Table 3 Mean � standard deviations of the MAE, gamma indices, and DVH differences of the PTV and statistical analysis derived
from the WS and WS combined with a bias field correction (N4) cohort comparison

WS WS and N4 P value 95% confidence interval

MAE head, HU 78 � 22 81 � 22 <.0001 e4.79 to e2.57
MAE air, HU 253 � 65 244 � 62 <.0001 5.23-11.84
MAE bone, HU 199 � 54 230 � 56 <.0001 e35.81 to e27.07
MAE water, HU 36 � 11 34 � 10 <.0001 2.02-2.91
1%/1 mm gamma index 98.08% � 1.01% 97.92% � 1.06% .0035 0.04-0.19
2%/2 mm gamma index 99.64% � 0.29% 99.60% � 0.32% .0026 0.01-0.06
3%/3 mm gamma index 99.85% � 0.17% 99.83% � 0.19% .012 0.00-0.03
Difference
PTV D02%

0.20% � 0.13% 0.15% � 0.12% .026 0.00-0.13

Difference
PTV D50%

0.21% � 0.13% 0.13% � 0.10% .0017 0.03-0.15

Difference
PTV D95%

0.19% � 0.15% 0.11% � 0.12% .0034 0.03-0.14

Difference
PTV D98%

0.20% � 0.17% 0.13% � 0.13% .0088 0.02-0.14

Abbreviations: DVH Z dose-volume histogram; MAE Z mean absolute error; PTV Z planning target volume; WS Z white stripe.

Bolded P values are associated with significant distributions differences.
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namely the training set size, the MR input sequence, the
standardization strategy, the application of a bias field
correction, and the network architecture. Best results were
achieved when combining the WS MRI standardization
with an inhomogeneity correction, the HighResNet, and all
our 242 training patient cases. This suggests that more
training cases could lead to further improvements.

Regarding the MR sequences experiment, a difference of
3 HU was observed between the head MAE means of the
T1 only and T1-Gdeonly models, suggesting that the
contrast agent resulted in a negligible pCT improvement.
The DVH differences led to a similar conclusion, as only a
0.07 pp maximum difference between the 2 models means
was obtained. We conducted an extra experiment to
Table 4 Mean � standard deviations of the MAE, gamma indices, an
derived from WS combined with a bias field correction (N4) and initial
comparison

WS, N4, and HighResNet WS, N

MAE head, HU 81 � 22
MAE air, HU 244 � 62
MAE bone, HU 230 � 56
MAE water, HU 34 � 10
1%/1 mm gamma index 97.92% � 1.06% 97
2%/2 mm gamma index 99.60% � 0.32% 99
3%/3 mm gamma index 99.83% � 0.19% 99
Difference
PTV D02%

0.15% � 0.12% 0

Difference
PTV D50%

0.13% � 0.10% 0

Difference
PTV D95%

0.11% � 0.12% 0

Difference
PTV D98%

0.13% � 0.13% 0

Bolded P values are associated with significant distributions differences.
evaluate the potential benefit of the T2 fluid attenuated
inversion recovery (FLAIR) MR sequence. A total of 134,
44, and 40 patients were included in the training, valida-
tion, and testing sets, respectively. The preprocessing
described for the T1-only and T1-Gdeonly cohorts was
similarly applied. A mean MAE � std of 115 � 22 HU was
obtained within the head area. Differences with the T1-only
and T1-Gdeonly cohorts were found to be significant (P <
.001). Thus, T2 FLAIR appeared to generate largest pCT
intensity-linked errors. It could be attributed to the lower
contrast contained in T2 FLAIR images compared with T1/
T1-Gd images. A second interpretation could be the slice
thickness, which was larger for most of the T2 FLAIR
images compared with T1/T1-Gd images, resulting in a less
d DVH differences computed for the PTVand statistical analysis
HighResNet against WS associated with N4 and 3D UNet cohort

4, and 3D UNet P value 95% confidence interval

90 � 21 <.0001 e9.39, e6.99
266 � 66 <.0001 e27.18 to e15.56
209 � 54 <.0001 16.91-25.79
49 � 11 <.0001 e15.81 to e14.09

.28% � 1.46% <.0001 0.42-0.79

.39% � 0.47% <.0001 0.10-0.24

.74% � 0.24% <.0001 0.03-0.11

.33% � 0.21% <.0001 e0.28 to e0.11

.29% � 0.19% <.0001 e0.22 to e0.10

.28% � 0.18% <.0001 e0.24 to e0.13

.31% � 0.18% <.0001 e0.26 to e0.15
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informative spatial sampling. Future work includes the
comparison of T1 and unusual sequences, such as zero echo
time in which bone areas are more visible, to assess which
combination of MRI sequences is optimal for an accurate
pCT reconstruction in radiation therapy.

The third experiment concerned the MRI standardization
and used the HighResNet as network architecture. A mean
� std of 78 � 22 HU was obtained for the head MAE when
applying the WS standardization, which slightly out-
performed HB, ZMUV, and NS (P < .0001). The greatest
errors were located in the air and bone areas, with a MAE
of 253 � 65 HU and 199 � 54 HU, respectively, and
seemed to correspond to misaligned regions or areas with
high dose gradients.

Dinkla et al11 reported competitive head MAE of 67 �
11 HU. All the CT and MR images used in their study were
acquired on the same device. In this work, MR images were
acquired from 5 different devices. Table EA8 presents the
composition of the training, validation, and test sets in
terms of MR devices. As one can notice, most of the MRI
scans in the training set (133) were acquired with the
DISCOVERY MR750w - 3T device. To analyze the impact
of this unbalance, the test set was split into 2 subsets: MRI
from the DISCOVERY MR750w 3T (57 patients) and MRI
from the SIGNA EXCITE 1.5T (21 patients). The default
HB standardization and HighResNet were used for this
experiment. Mean head MAE � std was 86 � 22 HU for
the DISCOVERY MR750w 3T and 106 � 16 HU for the
SIGNA EXCITE 1.5T (P < .0001). The pCT computed
from the DISCOVERY MR750w 3T device were of higher
quality because more MRI scans acquired with this device
were included in the training set and because 3T devices
offer better image resolution. Thus, we think that the
composition of the training set had a nonnegligible impact
on the generated pCT. Comparing the literature MAE is,
however, not a trivial task owing to the use of heteroge-
neous data sets, suggesting the need for publicly available
data sets.

Concerning the dosimetry analysis, negligible differ-
ences were observed between the different standardization
approaches. Regarding WS, a mean � std of 99.85% �
0.17% was obtained for the 3%/3 mm gamma index, which
was not significantly different from the ZMUV, HB, and NS
gamma indices (P � .14). These nonsignificant dosimetry
results can be attributed to the nonlinearity of both the HU-
ED curve and the radiation matter interaction effects. Very
few studies reported dosimetry evaluations for brain pCT
generated with a DL-based approach. Dinkla et al11 ach-
ieved 91.1% � 3.0%, 95.8% � 2.1%, and 99.3% � 0.4%
for 1%/1 mm, 2%/2 mm, and 3%/3 mm head gamma
indices with no threshold. A similar performance was ob-
tained by Liu et al,29 who reported 99.2% for the 3%/3 mm
gamma index. Recently, Kazemifar et al12 achieved
state of-the-art 1%/1 mm and 2%/2 mm gamma indices of
94.6% � 2.9% and 99.2% � 0.8%. Dosimetry analyses are
crucial because they are the only relevant metric for use in
clinics.
The fourth experiment evaluated the role of an in-
homogeneity correction combined with the HighResNet
and the WS standardization. Although a slight increase of 3
HU in the mean head MAE was obtained when applying
the N4 filter, the DVH analysis showed a negligible
decrease in the mean of up to 0.08 pp (P � .026). This
could be justified by acceptable MRI quality or the net-
work’s ability to handle this issue.

The last experiment was the evaluation of 2 different
network architectures: HighResNet and 3D UNet. For each
model, the WS standardization and the N4 filter were
applied. The mean head MAE � std was 81 � 22 HU and
90 � 21 HU for the HighResNet and 3D UNet, respec-
tively. The lower HighResNet MAE may be attributed to 2
major advantages: the dilated convolution filters, which
enable a large spatial context while retaining the full image
resolution, and the residual connections, which regularize
the optimization of the model.

Regarding the dosimetry, 3%/3 mm gamma indices
equal to 99.83% � 0.19% and 99.74% � 0.24% were ob-
tained for the HighResNet and the 3D UNet, respectively.
As a result, no significant clinical impact was observed
between the 2 architectures. In the literature, a lower MAE
of 47 � 11 HU was reported by Kazemifar et al12 using a
2D GAN. In the context of pCT generation, a GAN cor-
responds to the training of a second auxiliary neural
network that learns a loss function to estimate the distance
between a pCT and the distribution of all the true possible
CT. This data-driven loss function is used to train the main
neural network that learns the mapping from MRI to pCT.
Therefore, pCTs produced by a GAN are not guaranteed to
respect the anatomy of the patient. To mitigate this issue,
CycleGAN using an additional cycle-consistency penali-
zation has been proposed.19,30 However, cycle consistency
implies a 1-to-1 mapping between the MRI and CT, which
is not realistic and can lead to artefacts in the pCT.31 As a
result, further investigation of the errors specific to GAN
and CycleGAN is needed for their clinical use in radiation
therapy and is beyond the scope of this paper.

The loss function used to train the network has a knock-on
effect on the pCTquality.Here, theMAEwas chosen because
it was found to generate less blurry images than the mean
squared error during preliminary experiments. Kazemifar
et al12 trained two 2DGANbased on theMAEand themutual
information loss functions and obtained a headMAEmean�
std of 60 � 22 HU and 47 �11 HU, respectively. Therefore,
exploring different loss functions is of interest because it can
heavily affect intensity-linked errors.

Based on all the dosimetry results, very small discrep-
ancies were obtained among the preprocessing applied. For
instance, 3%/3 mm gamma indices equal to 99.83% �
0.19% and 99.85% � 0.17% were achieved for the exper-
iments based on the combination of the HighResNet and
WS standardization and optionally applying the N4 filter
(Table 3). Although a significant P value of .012 was ob-
tained, no major clinical impact is expected. As a result,
this suggests that the proposed pCT generation method may



Alvarez Andres et al. International Journal of Radiation Oncology � Biology � Physics822
be suitable for introduction into clinics, regardless of the
preprocessing applied.

The dose calculation algorithm used in this study was
PB. An extra experiment was conducted to evaluate its
relevance against Monte Carlo, considered more accurate in
taking heterogeneities into account.32,33 Bcause the latter is
not commissioned in our institution for intensity modulated
radiation therapy plans, we constituted an additional cohort
of 8 brain tumor patients treated with arc therapy. Four out
of 8 patients had a CT and a T1 MRI, the rest had a CT and
a T1-Gd MRI. The preprocessing previously described in
the Materials and Methods section was similarly applied,
and the pCTs were generated. Dosimetry was performed on
the pCTwith the 2 different dose algorithms. No significant
differences were observed for the DVH differences analysis
(P � .27). A similar conclusion was obtained for the 3%/3
mm and 2%/2 mm gamma indices (P � .40). Concerning
the 1%/1 mm criterion, 98.94% � 0.68% and 98.40% �
0.84% gamma pass rates were achieved for the PB and
Monte Carlo algorithms, respectively (P Z .0078). As a
result, the PB approach is a reliable technique for the head
localization owing to the absence of large inhomogeneities.

Regarding the data set, it was composed of 402 cases. To
our knowledge, this is the largest cohort ever used in the
head pCT generation field. Previous studies involved up to
77 patients.12 Our data were split into independent sets:
training, validation, and testing. Note that most of the
published studies lack a validation set,11,13,14,19,29,30

potentially leading to biased results.
MRI-only radiation therapy could remove isotropic 2

mm margins due to registration errors.1 However, distor-
tions can also lead to errors up to 2 mm even after applying
a correction algorithm.34 Therefore, establishing reliable
quality assurance35,36 is the key to unlock the full potential
of radiation therapy.

Several limitations are present in this study. First, our DL
pipeline necessitated paired images and thus intermodality
registration, which can introduce errors in the training set. To
evaluate this error, an experienced radiologist placed 3
landmarks both on the CT and the MRI of 10 patients.
Registering the CTonto theMRI led to a mean distance error
� std of 3.0 mm � 1.1 mm. Further investigation may focus
on rigid registration errors and evaluate different algorithms,
such as the FLIRT37,38 tool, for comparison. Second, no
analysis of the interplay effect of preprocessing steps and
networks architecture was performed. Indeed, the use of a
bias field correction and the selection of WS as the best
standardization was based on experiments performed using
HighResNet. This may have introduced bias in the compar-
ison of HighResNet and 3D Unet.
Conclusions

In this study, we aimed at optimizing relevant parameters to
achievehigh-quality pCT forMR-only radiation therapy. The
large variety of imaging devices and the considerable patient
number constituting the training set appear to have a great
impact on the pCT quality. All the parameters previously
described, such as the MR sequence, intensity standardiza-
tion, bias field correction, and network architecture, have a
minor influence on dosimetry as the gamma indices andDVH
differences remained clinically convincing for every tech-
nique in our cohort. This suggests the efficiency of the model
and its possible introduction into clinics. Future work in-
cludes the extension of the current 3D network to integrate
segmentation masks of target and organ-at-risk volumes and
the development of a pCT generation model for a different
anatomic site, such as the pelvis.
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