A blinded prospective evaluation of clinical applicability of deep learning-based auto contouring of OAR for Head & Neck radiotherapy P Blanchard¹, V Grégoire², C Petit¹, N Milhade², A Allaibei², F Nguyen¹, S Bakkar¹, G Boulle¹, E Romano¹, W Zrafi¹, A Lombard³, G Beldioudi², A Munoz², E Ullmann³, N Paragios³, E Deutsch^{1,4}, C Robert^{1,4}.

P Blanchard¹, V Grégoire², C Petit¹, N Milhade², A Allajbej², F Nguyen¹, S Bakkar¹, G Boulle¹, E Romano¹, W Zrafi¹, A Lombard³, G Beldjoudi², A Munoz², E Ullmann³, N Paragios³, E Deutsch^{1,4}, C Robert^{1,4}. 1. Gustave Roussy Cancer Campus, Villejuif, France; 2. Léon Bérard Cancer Center, Lyon, France; 3. Therapanacea, Paris, France; 4. Molecular radiotherapy and innovative therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France

PURPOSE/OBJECTIVE(S)

- Contouring Organs at Risk (OAR) is time-consuming and highly inhomogeneous among physicians; it affects the accuracy of high precision image-guided radiotherapy.
- Artificial intelligence (AI) can accelerate OAR delineation and homogenize volume definition.
- > This study aims at blindly evaluating two versions of an AI-based automatic delineation software for OAR.

MATERIAL & METHODS

- The software tested is a CE-marked software for automatic contouring of more than 80 OAR harnessing a unique combination of anatomically preserving and deep learning annotation concept. v1.0 was trained using on average 6,000 cases per organ, while v2.0 used 21,000, in both cases after data augmentation.
- One hundred patients with head and neck tumors, retrospectively selected from two French Cancer Centers, for whom clinical expert's annotations that were used for treatment were retrieved.
- > Two subsets of data were randomly created:
 - the first mixed 50% of expert-delineated contours and 50% of software v1.0-generated contours,
 - the second mixed (1/3 each) expert-contours and software v1.0 and v2.0 contours.
- Contours of 16 OARs were generated and scored by 5 experts and then 4 OARs (mandible, M; brainstem, BS; optic nerve, ON; submandibular gland, SG) were scored again by two experts (PB & VG), as A/ acceptable, B/ acceptable after minor corrections, C/not acceptable. Dice similarity coefficient (DSC) and Hausdorff distance (HD) were also computed.

- For the first set of data, 96% of all manual contours were classified as clinically useable (75% and 21% in A and B categories, respectively), compared to 95% for autocontours (56 % and 39 % in A and B, respectively) (Table 1).
- Using software v2.0, contours classified as clinically useable (A + B) increased significantly, reaching 100% for M, 98% for BS, 98% for ON and 92% for SG, versus 100%, 97%, 63% and 50% for v1.0, respectively (Table 2).
- When the two datasets were compared, intra- and interobserver rating (score A, B or C) reproducibility was rather poor, ranging from 26% to 78% for the 4 OARs. When only looking at score A+B vs C the reproducibility among observers increased, ranging between 50% and 98%.
- For ON and SG, mean DSC improved from 0.53 to 0.70 and 0.70 to 0.78 between v1.0 and v2.0 of the software, whereas mean HD decreased by 30% and 17%, respectively.

Right

Parotid

97%

96%

Right optic

nerve

99%

89%

Left Parotid

96%

96%

Left optic

nerve

99%

92%

% of A+B

Manual contouring

Autocontour v1.0

% of A+B

Manual contouring

Autocontour v1.0

Table 1: Percentage of clinically useable contours between manual and autocontouring (v1.0 of the software – 1st evaluation)

Spinal Cord

89%

94%

Larynx

94%

100%

Mandibule

97%

99%

Oral Cavity

94%

99%

Right Eyeball

100%

96%

R sub mandib

GI

99%

87%

Brainstem

89%

98%

Thyroid

99%

97%

Left Eveball

97%

96%

L sub mandib Gl

100%

86%

Table 2: Percentage of clinically useable contours between manual and 2 versions of autocontouring (v1.0 & v2.0) for 4 selected OAR (2^{nd} evaluation)

CENTRE LEON BERARD

UNIVERSITE PARIS-SACLAY **THERAPANACEA**

Inserm

GUSTAVE/

GRAND PARIS

% of A+B	Manual contouring	Software v1.0	Software v2.0
Mandibule	87%	100%	100%
Brainstem	69%	97%	98%
Optic nerve	93%	63%	98%
Sub-mandibular gland	97%	50%	92%

SUMMARY/CONCLUSION

- This study illustrates the potential of AI for automatic contouring of OAR in radiotherapy planning. Automatic contouring with this CE-marked software was very close to expert contouring and clinically usable in the vast majority of cases.
- Evaluation of automatic algorithms requires objective metrics as illustrated by the disagreement between experts. Evaluation of the impact of contour delineation heterogeneity on dose distribution remains is in progress.
 - @PBlanchardMD

RESULTS